Forming of curvilinear structures based on polyhedrons by the projectivographical method

Authors:

Ivashchenko Andrei, candidate of technical sciences, Department of Descriptive Geometry and Graphics, National Research Moscow State University of Civil Engineering

Kondratyeva Tatyana, Associate Professor, Department of Descriptive Geometry and Graphics, National Research Moscow State University of Civil Engineering

Polyakov Oleg, Associate Professor, Department of Modeling and design of power plants, MPEI, National Research University
The disadvantages of projectivographical drawings (PD) include the fact that with their help it is possible to obtain only piecewise linear forms.

Significantly more extensive sets of shapes can be obtained by moving from strictly rectilinear PD elements to nonlinear ones using various deformations.

To obtain curvilinear forms, one can deform an object defined in an affine Euclidean space using a non-Euclidean space.
Forming of curvilinear structures based on polyhedrons by the projectivographical method

Variants of octahedron curvilinear deformations (calculation and showed in *Wolfram Mathematica*)
Among the huge variety of deformations, we distinguish those that are described by the simplest analytical expressions. Spherical and hyperbolic deformations as applied to each point in space can be obtained as a result of a change in the magnitude of the radius vector of this point (using spherical coordinates). For example, we can use the formula:

\[r_1 = r_s; \]

where \(s \) is the original radius vector of any point in space, \(s \) is the deformation coefficient, \(r_1 \) is the new radius-vector of the point. If \(|s| > 1\) we obtain a spherical deformation, if \(|s| < 1\) then a hyperbolic one.
Forming of curvilinear structures based on polyhedrons by the projectivographical method

Variants of octahedron curvilineal deformations (calculation and showed in **Wolfram Mathematica**)

Moscow, Russia
14-17 April, 2020
Forming of curvilinear structures based on polyhedrons by the projectivographical method

Variants of “5-cube compounds” polyhedron deformations
On this slide show the projectivographical drawings of the compounds of three dodecahedrons.
Forming of curvilinear structures based on polyhedrons by the projectivographical method

compounds of three dodecahedrons (two views)

This slide shows the polyhedron that is the source to this system of planes.
Forming of curvilinear structures based on polyhedrons by the projectivographical method

Hyperbolic deformation of compounds of three dodecahedrons
Forming of curvilinear structures based on polyhedrons by the projectivographical method

Twist-deformations of “3-cube-compound” (along one axe)
Forming of curvilinear structures based on polyhedrons by the projectivographical method

Twist-deformations of “3-cube-compound” (along three axes)
Forming of curvilinear structures based on polyhedrons by the projectivographical method

Moscow, Russia
14-17 April, 2020

Bend-deformations of “3-cube-compound”
In future studies, it is necessary to solve the problem of determining the limits of applicability of these transformations that preserve the functionality of the tool for creating in three-dimensional space (in other words, how much these transformations can be distorted so that the distortion of the three-dimensional object still maintains conformity with the two-dimensional drawing).
Forming of curvilinear structures based on polyhedrons by the projectivographical method

References

[10] Mount D 2002 *Computational Geometry* (University of Maryland) and other...
Thank you for attention!

Speaker’s contacts:

Ivashchenko Andrei
National Research Moscow State University of Civil Engineering
e-mail: Ivashchenko_A@inbox.ru