

Machine Learning Implementation for the Inverse Problems Solution

Sergey Vishnyakov NRU MPEI Author:

Sergey Vishnyakov, NRU MPEI

The study was performed with a financial support from the Ministry of Science and Higher Education of the Russian Federation (Unique identifier: RFMEFI60719X0324)

Machine Learning Implementation for the Inverse Problems Solution

2

14-17 April, 2020

Motivation:

- machine learning based technique of the microwave device tuning (oscillating system, filter) are discussed
- the introduction of the technique into the educational process is described

14-17 April, 2020

Machine Learning Implementation for the Inverse Problems Solution

Microwave filters tuning problem is one of the typical inverse problems that affects the manufacturing (mass-production) process mainly, especially when high quality dielectric resonators are implemented

tuning elements

The complexity of this particular inverse problem is determined by:

- too many tuning elements are involved (e.g. screws)
- the experimental tuning process is expensive

14-17 April, 2020

Machine Learning Implementation for the Inverse Problems Solution

The high-quality resonance sections for oscillating systems determine the phase noise ratio of the microwave generator that is critically important for practice: mapping, navigation, ultra-wide band telecommunications

The complexity of this particular inverse problem is determined by:

- sophisticated dependence of the oscillating system parameters on tuning elements

- the experimental tuning of the generator is extremely expensive

14-17 April, 2020

Machine Learning Implementation for the Inverse Problems Solution

5

The machine learning is considered as one of the effective solutions for this type of inverse problem:

the problem definitely has appropriate solution (tuning process converges)

the problem is usually separable, it is well conditioned (in contrast with general synthesis problem)

Machine Learning Implementation for the Inverse Problems Solution

Therefore, tuning problem may be implemented as a relatively simple but important educational problem

The problem setup:

- the required filter characteristic is given
- the initial setup of the lumped elements model is given
- the cos, sin or exp dependencies of the lumped parameters of the model are determined

The goal is to tune (make a trajectory from the initial to appropriate state) a filter!

Machine Learning Implementation for the Inverse Problems Solution

The data markup stage

Students are to prepare computed frequency dependencies of the transfer function on tuning parameters

Machine Learning Implementation for the Inverse Problems Solution

Training stage

Students are to train relatively simple neural network

backpropagation and gradient-based optimization are presumed

input is a transfer function at the current step

8

putputs are the increase/decrease decisions for each tuning parameter

Machine Learning Implementation for the Inverse Problems Solution

Testing stage

Students are to test the trained network

the overall resulting transfer function is to be determined

the number of tuning steps is to be evaluated

Machine Learning Implementation for the Inverse Problems Solution 10

Simplified problem – oscillating system

Students are to markup the data, train and test the network

Coupling coefficient β vs depth of the tuning screw h

Smaller number of tuning parameters is required

Preliminary data set is given

IEEE

Machine Learning Implementation for the Inverse Problems Solution

Thank you for attention!

Speacker's contacts:

Sergey Vishnyakov National Research University MPEI vishniakovsv@mpei.ru

≣♪

